(Question		Answer	Marks	Guidance
1			$\sum_{\gamma=1}^{n} r(r-2) = \sum_{\gamma=1}^{n} r^2 - 2\sum_{\gamma}^{n} r$ $= \frac{1}{6} n(n+1)(2n+1) - n(n+1)$ $= \frac{1}{6} n(n+1)[(2n+1) - 6]$ $= \frac{1}{6} n(n+1)(2n-5)$	M1	Separate sum (may be implied)
			$= \frac{1}{6}n(n+1)(2n+1) - n(n+1)$	A1,A1	1 mark for each part oe
			$= \frac{1}{6}n(n+1)[(2n+1)-6]$	M1	n(n+1)(linear factor) seen
			$= \frac{1}{6}n(n+1)(2n-5)$	A1	Or $n(n+1)(2n-5)/6$ only, ie $1/6$ must be a factor
				[5]	
2	(i)		$\begin{pmatrix} -3 & -2 \\ -2 & 1 \end{pmatrix}$	B1,B1	1 mark for each column. Must be a 2×2 matrix Condone lack of brackets throughout
				[2]	
2	(ii)		$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B1	
				[1]	
2	(iii)		$\begin{pmatrix} -3 & -2 \\ 2 & -1 \end{pmatrix}$	B1,B1	1 mark for each column (no ft). Must be a 2×2 matrix
				[2]	

PMT

Question	Answer	Marks	Guidance
3	z = 2 - 3j is also a root	B1	
	Either		
	(z-(2+3j))(z-(2-3j))=((z-2)+3j))((z-2)-3j)	M1	Condone $(z+2+3j)(z+2-3j)$
	$=z^2-4z+13$	A1	Correct quadratic
	$z^{4} - 5z^{3} + 15z^{2} - 5z - 26 = (z^{2} - 4z + 13)(z^{2} - z - 2)$	M1 A1	Valid method to find the other quadratic factor. Correct quadratic
	$(z^2-z-2)=(z-2)(z+1)$		
	So the other roots are 2 and -1	A1,A1	1 mark for each root, cao
		[7]	
	Or		
	$2 + 3j + 2 - 3j + \gamma + \delta = 5$ oe	B1	Sum of roots with substitution of roots $2\pm 3j$ for α and β
	$(2+3j)(2-3j)\gamma\delta = -26$	M1	Attempt to obtain equation in $\gamma\delta$ using a root relation and
	$\gamma \delta = -2$	MII	$2\pm 3j$
	$\Rightarrow 4 + \gamma + \delta = 5 \Rightarrow \gamma = 1 - \delta$		
	and $13\gamma\delta = -26 \Rightarrow \gamma\delta = -2$	M1	Eliminating γ or δ leading to a quadratic equation
	$\Rightarrow \delta(1-\delta) = -2 \Rightarrow \delta^2 - \delta - 2 = 0$	A1	Correct equation obtained
	$\Rightarrow (\delta+1)(\delta-2)=0$		
	So the other roots are -1 and 2.	A1,A1	1 mark for each, cao
			If 2, -1 guessed from $\gamma + \delta = 1$ and $\gamma \delta = -2$ give A1 A1 for
			these equations and A1A1 for the roots.
			SC factor theorem used. M1 for substitution of $z = -1$ (or 2) or division by $(z + 1)$ (or by $z - 2$), A1 if zero obtained, B1 for the
			root stated to be -1 (or 2). For the other root, similarly but
			M1A1A1 Max [7/7]
			Answers only get M0M0, max [1/7]
		[7]	

Question	Answer	Marks	Guidance
4	$\sum_{r=1}^{n} \frac{1}{(2r+3)(2r+5)} = \frac{1}{2} \sum_{r=1}^{n} \left[\frac{1}{2r+3} - \frac{1}{2r+5} \right]$	M1	Split to partial fractions. Allow missing ½
	$= \frac{1}{2} \left[\left(\frac{1}{5} - \frac{1}{7} \right) + \left(\frac{1}{7} \dots \right) + \dots + \left(\dots - \frac{1}{2n+5} \right) \right]$	M1 A1	Expand to show pattern of cancelling, at least 4 fractions All correct, allow missing $\frac{1}{2}$, condone r
	$= \frac{1}{2} \left[\frac{1}{5} - \frac{1}{2n+5} \right] = \frac{n}{5(2n+5)}$	M1 A1	Cancel to first minus last term must be in terms of n . oe single fraction
		[5]	

Question	Answer	Marks	Guidance
5	Either		
	$y = 3x - 1 \Rightarrow x = \frac{y + 1}{3}$	M1*	Change of variable, condone $\frac{y-1}{3}, \frac{y}{3} \pm 1$.
	$\Rightarrow 3\left(\frac{y+1}{3}\right)^3 - 9\left(\frac{y+1}{3}\right)^2 + \left(\frac{y+1}{3}\right) - 1 = 0$	M1dep*	Substitute into cubic expression Correct
	Correct coefficients in cubic expression (may be fractions)	A3ft	ft their substitution (-1 each error)
	$\Rightarrow y^3 - 6y^2 - 12y - 14 = 0$	A1	cao. Must be an equation with integer coefficients
		[7]	
	Or $\alpha + \beta + \gamma = \frac{9}{3} = 3$ $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{1}{3}$	M1	All three root relations, condone incorrect signs
	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{1}{3}$ $\alpha\beta\gamma = \frac{1}{3}$	A1	All correct
	Let new roots be k , l , m then $k + l + m = 3(\alpha + \beta + \gamma) - 3 = 6$ $kl + km + lm = 9(\alpha\beta + \alpha\gamma + \beta\gamma) - 6(\alpha + \beta + \gamma) + 3 = -12$	M1	Using $(3\alpha$ -1) etc in $\sum k$, $\sum kl$, klm , at least two attempted, and using $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$
	$klm = 27\alpha\beta\gamma - 9(\alpha\beta + \beta\gamma + \beta\gamma) + 3(\alpha + \beta + \gamma) - 1 = 14$	A3ft	One each for 6, – 12, 14, ft their $3, \frac{1}{3}, \frac{1}{3}$.
	$\Rightarrow y^3 - 6y^2 - 12y - 14 = 0$	A1 [7]	cao. Must be an equation with integer coefficients

PMT

Question	Answer	Marks	Guidance
6	When $n = 1$, $\frac{1}{1 \times 3} = \frac{1}{3}$ and $\frac{n}{2n+1} = \frac{1}{3}$, so true for $n = 1$	B1	Condone eg " $\frac{1}{3} = \frac{1}{3}$ "
	Assume true for $n = k$	E1	Assuming true for <i>k</i> , (some work to follow) If in doubt look for unambiguous "if…then" at next E1 Statement of assumed result not essential but further work should be seen
	Sum of $k + 1$ terms $= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$	M1	NB "last term = sum of terms" seen anywhere earns final E0 Adding correct $(k + 1)$ th term to sum for k terms
	$= \frac{k(2k+3)+1}{(2k+1)(2k+3)}$ $= \frac{2k^2+3k+1}{(2k+1)(2k+3)}$	M1	Combining their fractions
	$= \frac{(2k+1)(2k+3)}{(2k+1)(2k+3)} = \frac{k+1}{2k+3}$	A1	Complete accurate work
	which is $\frac{n}{2n+1}$ with $n=k+1$		May be shown earlier
	Therefore if true for $n = k$ it is also true for $n = k + 1$.	E1	Dependent on A1 and previous E1.
	Since it is true for $n = 1$, it is true for all positive integers, n .	E1	Dependent on B1 and previous E1 E0 if "last term"= "sum of terms" seen above
		[7]	

	Question		Answer	Marks	Guidance
7	(i)		$\left(0, -\frac{5}{6}\right)$	B1	Allow for both $x = 0$ and $y = -\frac{5}{6}$ seen
			$(\sqrt{5}, 0), (-\sqrt{5}, 0)$	B1	(both) Allow $(\pm \sqrt{5}, 0)$ or for both $y = 0$ and $x = \pm \sqrt{5}$ seen
				[2]	
7	(ii)		a = 2	B1	
			y = 0	B1	
			x = -3, x = 2	B1	Must be two equations
				[3]	
7	(iii)		y = -5/6 $x = -3$ $x = 1/2$ $x = 2$	B1 B1 B1	Two outer branches correctly placed Inner branches correctly placed Correct asymptotes and intercepts labelled For good drawing. Dep all 3 marks above Look for a clear maximum point on the right-hand branch, (not really shown here). Condone turning points in $-\sqrt{5} < x < \frac{1}{2}$, $y < 0$
	(iv)		$-3 < x < -\sqrt{5}, \ \frac{1}{2} < x < 2, \ x > \sqrt{5}$	В3	One mark for each. Strict inequalities. Allow 2.24 for $\sqrt{5}$
				[3]	(if B3 then – 1 if more than 3 inequalities)

Question		Answer	Marks	Guidance
8 (i)		$ w = \sqrt{\left(2^2 + \left(2\sqrt{3}\right)^2\right)} = 4$	B1	
		$\arg w = \arctan \frac{2\sqrt{3}}{2} = \frac{\pi}{3}$	M1	
		$w = 4\left(\cos\frac{\pi}{3} + j\sin\frac{\pi}{3}\right)$	A1	Accept $\left(4, \frac{\pi}{3}\right)$, 1.05 rad, 60 \(\sigma\) in place of $\frac{\pi}{3}$, or $4e^{j\frac{\pi}{3}}$
			[3]	

4755 Mark Scheme June 2014

Question	Answer	Marks	Guidance
8 (ii)	Im / w	B1	Circle, or arc of circle, centre the origin
		B1	Radius 4
		B1	Half line from origin $\frac{\pi}{4}$ < angle < $\frac{\pi}{2}$ with positive real axis
			or acute angle labelled as $\pi/3$
	-2 Re	B1	Use of negative Im axis clearly indicated
	-2	B1	Correct region indicated. Dependent on first 4 B marks Ignore placing of w.
		B1	w at intersection of $\frac{\pi}{3}$ line and circle (dep 1 st 3 B marks)
	Maximum $ z - w = \sqrt{\left(2^2 + \left(4 + 2\sqrt{3}\right)^2\right)} = 7.73 \text{ (3 s.f.)}$	B1	Maximum $ z-w $ indicated by chord on diagram oe or sight of $-4j-(2+2\sqrt{3}j)$ oe
	Or $2x \cdot 4\cos 15 \square = 2\sqrt{6+2\sqrt{2}}$	M1	Valid attempt to calculate maximum $ z - w $
		A1	allow $\sqrt{32+16\sqrt{3}}$ oe (accept 2 s.f. or better)
		[9]	

	Question		Answer	Marks	Guidance
9	(i)		$\beta = (-1)(3\alpha - 1) + 5\alpha + (-1)(2\alpha + 1)$	M1	multiply second row of A with first column of B
			$=-3\alpha+1+5\alpha-2\alpha-1=0$	A1	Correct
				[2]	
9	(ii)		$\gamma = (1)(3\alpha - 1) + 15 + (-1)(2\alpha + 1)$	M1	Attempt to multiply relevant row of A with relevant column of B. Condone use of BA instead
			$=\alpha+13$	A1	Correct
				[2]	
9	(iii)		When $\alpha = 2$, $\gamma = 15$ $\begin{pmatrix} 5 & -8 & -1 \\ \end{pmatrix}$	M1	Multiplication of B by $\frac{1}{\text{their } \gamma}$, $(\gamma \neq 1)$ using $\alpha = 2$ in both
			$\mathbf{A}^{-1} = \frac{1}{15} \begin{pmatrix} 5 & -8 & -1 \\ 5 & 1 & 2 \\ 5 & -5 & 5 \end{pmatrix}$	A1	Correct elements in matrix and correct γ.
			\mathbf{A}^{-1} does not exist when $\alpha = -13$	B1ft	ft their $\gamma = 0$. Condone " $\alpha \neq -13$ "
				[3]	
9	(iv)		$\frac{1}{15} \begin{pmatrix} 5 & -8 & -1 \\ 5 & 1 & 2 \\ 5 & -5 & 5 \end{pmatrix} \begin{pmatrix} 25 \\ 11 \\ -23 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$	M1	Set-up of pre-multiplication by their $3x3 A^{-1}$, or by B (using $\alpha = 2$)
			$=\frac{1}{15} \begin{pmatrix} 60\\90\\-45 \end{pmatrix} = \begin{pmatrix} 4\\6\\-3 \end{pmatrix}$	B1	(60 90 -45)' soi need not be fully evaluated
			$\Rightarrow x = 4, y = 6, z = -3$	A3	cao A1 for each explicit identification of x , y , z in a vector or a list. (-1 unidentified)
				[5]	Answers only or solution by other method, M0A0